BOSTON
UNIVERSITY

Unsupervised Learning
&
Generative Adversarial Networks

DLADS — Spring 2025

https://udlbook.github.io/udlbook/

April Dates

'/

Sunday Monday Tuesday Wednesday Thursday Friday Saturday
April 1 2 3 4 5 6
GANs
7 8 9 10 11 12 13
VAEs Discussion Diffusion Models
14 15 16 17 18 19 20
Graph Neural Discussion Reinforcement
Nets Learning
21 22 23 24 25 26 27
TBD/Overflow Discussion % Project ®X@
Presentations 1 %
28 29 30 @X@ May 1 2 3 4
% Project Discussion?? Study Period Study Period
Presentations 2 %
5 6 7 8 9 10 11
Final Exams Final report
[& Repo ** ®X@J

** Might be earlier.

Depends on when grades are due.

. . Format:
P rOJ e Ct P rese ntat | O n S < 2 m?nutes scre.e‘ncast/video ‘
< 2 minutes additional presentation

~2 minutes Q&A
Looking for volunteers for April 25.)

Then | will randomly draw remainder of April 25 spots.

April 25 — 75 minutes April 30 — 75 minutes
e Slot 1 Slot 9

* Slot 2 * Slot 10

* Slot 3 * Slot 11

e Slot 4 * Slot 12

e Slot 5 Slot 13

 Slot 6 * Slot 14

 Slot 7 * Slot 15

* Slot 8 * Slot 16

e Slot 17

Up to this point...

* we looked at discriminative supervised learning models

* Exceptions:

* Transformers pretrained unsupervised (then usually finetuned
supervised)

* and the Transformer decoder which generated text

Supervised ‘ Unsupervised

Discriminative ‘ Generative

Supervised vs. Self/Unsupervised Learning

Supervised Learning

Data: (x,y)
x is data, y is a label

Goal: Learn function to map
XYy

Applications: Classification, regression,
object detection, semantic
segmentation, etc.

© Alexander Amini and Ava Amini, MIT 6.5191: Introduction to Deep Learning, IntroToDeepLearning.com

Supervised vs. Self/Unsupervised Learning

Supervised Learning Self/Unsupervised Learning

Data: (x,y) Data: x

x is data, y is a label éc is data, no labels! Or labels part of the
ata

Goal: Learn function to map
X — Goal: Learn the hidden or underlying
y
structure of the data.

Applications: Classification, regression, N : : : .
object detection, semantic A%r)llcatlons: Clustering, dimensionality
segmentation, etc. reduction, compression, find outliers,

generating new examples, denoising,
interpolating between data points, etc.

© Alexander Amini and Ava Amini, MIT 6.5191: Introduction to Deep Learning, IntroToDeepLearning.com

We’ll consider two attributes of models

* Probabilistic Models

e Latent Variable Models

Probabilistic models

* Maximize log likelihood of training data
- I -

q3 = argmax Z og[Pr(x;| ¢)
¢ =1 |

* Find the parameters, ¢, of some parametric probability distribution
so that the training data is most likely under that distribution

Latent variable models

Normal Latent
distribution variables
[—0.5]
0.1
: 1.2
—0.6

Model

Deep learning
model

> 110

Model output
[110]
109
110
108
109

110
110
109

Latent variable models map a random “latent” variable to create a new data sample

Real world output

Generative Modeling

Goal: Take as input training samples from some distribution
and learn a model that represents that distribution

Probability Density Estimation Sample Generations

L“ !
- N
7

|

samples @ - Input samples

Generated samples

Training data ~ Pyqeq(x) Generated ~ Ppode1 (%)
How can we learn Py, ¢;(x) similar to Pygeq(x)?

© Alexander Amini and Ava Amini, MIT 6.5191: Introduction to Deep Learning, IntroToDeepLearning.com

Types of unsupervised generative model

* Generative adversarial networks (GANs) (LV)
 Variational auto-encoders (VAEs) (P, LV)
 Diffusion models (P, LV)

* Autoregressive models (P)

Decoder model: GPT3

* One job: predict the next word in a sequence
* More formally builds an probability model

N
Pr(ty, t,...tn) = Pr(ty) [[Pr(talts .. ta_y)
n=2
* Doesn’t use latent variables, but is probabilistic and generative

e Can generate new examples
e Can assign a probability to new data

Why generative models? Debiasing

Capable of uncovering underlying features in a dataset

Homogeneous skin color, pose Diverse skin color, pose, illumination

How can we use this information to create fair and representative datasets?

Amini et al, “Uncovering and Mitigating Algorithmic Bias through Learned Latent Structure,” 2019

13
© Alexander Amini and Ava Amini, MIT 6.5191: Introduction to Deep Learning, IntroToDeepLearning.com

Why generative models? Outlier detection

* Problem: How can we detect when 95% of Driving Data:
(1) sunny, (2) highway, (3) straight road

we encounter something new or rare?
 Strategy: Leverage generative models, e _ | L‘
detect outliers in the distribution — —— 28 B e e—
* Use outliers during training to i
improve even more!

Harsh Weather Pedestrians

A. Amini et al, “Variational Autoencoder for End-to-End Control of Autonomous Driving with Novelty Detection and Training De-biasing,” 2018
© Alexander Amini and Ava Amini, MIT 6.5191: Introduction to Deep Learning, IntroToDeepLearning.com 14

More outlier examples

ow Matroid

Scaled Machine Learning Conference

Al for Full-Self Driving

ANDREJ KARPATHY

Sr. Director of Artificial Intelligence - Tesla

YouTube Video, Feb. 2020 -- https://www.youtube.com/watch?v=hx7BXih7zx8&t=514s

15

https://www.youtube.com/watch?v=hx7BXih7zx8&t=514s

Style: pop upbeat

Why generative models?
image, video and audio creation

[Verse]

We're young dreamers with a heart so full

Ready to learn, ready to break the mold (the mold)
Neural networks, we're obsessed from the start

We'll conquer the world, we're gonna make our mark (ooh-
yeah)

[Chorus]

We're wired for success, ready to fly (ready to fly)

A generation united, reaching for,the sky (reaching high)
Neural networks, our minds will ignite (ignite)

We'll change the world with all our might (ooh-yeah, all
right)

A teenage superhero fighting crime in an urban Write a short pop song about

setting shown in the style of claymation. students wanting to learn about
neural networks and do great

things with them.

Latent Variable Models

Generative Adversarial Networks

Autoencoders and
Variational Autoencoders (VAEs)

Discriminator
X Decoder

Generator

17
© Alexander Amini and Ava Amini, MIT 6.5191: Introduction to Deep Learning, IntroToDeepLearning.com

Generative = can generate
new examples

Probabilistic = can assign
probability to data examples

18

Fitting generative adversarial networks

-Fitting generative adversarial networks -

What makes a good model?

* Efficient sampling: Generating samples from the model should be computation-
ally inexpensive and take advantage of the parallelism of modern hardware.

* High-quality sampling: The samples should be indistinguishable from the real
data that the model was trained with.

* Coverage: Samples should represent the entire training distribution. It is insufficient to
only generate samples that all look like a subset of the training data.

* Well-behaved latent space: Every latent variable z should correspond to a
plausible data example x and smooth changes in z should correspond to smooth
changes in x.

* Interpretable latent space: Manipulating each dimension of z should correspond to
changing an interpretable property of the data. For example, in a model
of language, it might change the topic, tense or degree of verbosity.

* Efficient likelihood computation: If the model is probabilistic, we would like
to be able to calculate the probability of new examples efficiently and accurately

Do we have good models?

GANs | VAEs | Flows | Diffusion
Efficient sampling v v v X
High quality v X X v
Coverage X ? ? ?
Well-behaved latent space v v v X
Interpretable latent space 7 ¥ 7 X
Efficient likelihood n/a X v X

How to measure performance within or between categories?

* Open research area.

22

“Generative adversarial networks”, Goodfellow et al

RESEARCH-ARTICLE OPEN ACCESS

¥y inao f
Generative adversarial networks

Authors: lan Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, @ Yoshua Bengio Authors Info & Claims

Communications of the ACM, Volume 63, Issue 11 « pp 139-144 « https:/doi.org/10.1145/3422622

Cumulative number of named GAN papers by month

TITLE CITEDBY YEAR g; g

480

lan fellow . ¥ * 465
an Goodfello Generative adversarial networks 75073 2014 450
| Goodfellow, J Pouget-Abadie, M Mirza, B Xu, D Warde-Farley, S Ozair, ... 420

, Advances in neural information processing systems 27 %?,,g

PhD ML, U de Montréal 2014) s
Deep learning 63352 2016 345

| Goodfellow, Y Bengio, A Courville 230

MIT press 300

* Google (TensorFlow, Google ' : *
TensorFlow: Large-scale machine learning on heterogeneous systems 24052 2015

Total number of papers
N
o

Brain) M Abadi, A Agarwal, P Barham, E Brevdo, Z Chen, C Citro, GS Corrado, ... %‘;2

210

* OpenAl Explaining and Harnessing Adversarial Examples 19914 2014 igg

I Goodfellow, J Shlens, C Szeged

* Google Staff/Sr. Staff Research T e 132

Scientist %

e Apple Director of ML @

30

* Google Deep Mind, Research K

. . 2014 2015 2016

Scientist Year

The GAN Zoo (Github)

23

https://github.com/hindupuravinash/the-gan-zoo/tree/master

General Idea of GANSs

* Don’t try to build a probability model directly

e Learn a transformation from a sample of noise
to look similar to training data distribution

l Generator

noise

24
© Alexander Amini and Ava Amini, MIT 6.5191: Introduction to Deep Learning, IntroToDeepLearning.com

Generative Adversarial Networks

Train a generative model to try to fool a “discriminator” model.

The discriminator tries to
real identify real data from fakes

. created by the generator.
The generator turns noise into X Y g

an imitation of the data to try
to trick the discriminator. fake [

y real [
l Generator

fake

25
© Alexander Amini and Ava Amini, MIT 6.5191: Introduction to Deep Learning, IntroToDeepLearning.com

GAN example

sk
L

Pr(rleal)

0.0

Real

0.0

| Dafa, lCIZ’ |

— glz5,6] = 25 + 0

* We take examples from a

distribution (e.g. shifted
standard gaussian)

* \We generate
, Zj, from a standard
gaussian and shift by 6.

* Train a classifier on the data

0.0

GAN example

r; = glzj,0| = z; + 0

0—30 * Train the

* using logistic regression
D— parameterized by ¢

\
f[.’ qb] * as a binary classifier on

Real the data

real if f[-] = .5
" &8 {fake if f[] <

Pr(rleal)

0.0 Data, T 1.0

GAN example

r; = glzj,0| = z; + 0

* Train the generator
0 =230 b) 9 =49 .
1.0 to update 6 in order
to increase the loss
on the discriminator

Real

Pr(rleal)

* Then train the
discriminator to

0.0 bl 11T T decrease the loss
0.0 Data, T 1.0 0.0 Data, T 1.0

GAN examp|e * Keep repeating till the

discriminator does no better

* h— . -_— .
T, = g[ZJ, 9] = 2; + 6 than random chance

a) 9 =3.0 b) 9 =4.9 c) 0 =6.7

©

L |

ra Real

(a

0.0

0.0 Data, T 1.0 0.0 Data, T 1.00.0 Data, T 1.0

29

Trained to completion

.
..

T L TN T

o X:samples according to a (green solid)
generative distribution
o black dotted curve: real data distribution

o blue dashed curve: discriminator Di(x) = Pdata()
pa’am(w> +pg(w)

We first consider the optimal discriminator D for any given generator G.

Proposition 1. For G fixed, the optimal discriminator D is

|. Goodfellow et al., “Generative Adversarial Nets,” 2014 30

GANS

* DCGAN results and problems

* Tricks for improving performance
e Conditional GANs

* Image translation models

GAN cost function

Discriminator uses standard cross entropy loss (see Section 5.4 — binary classification loss): :

® = argniin [Z —(1 — y) log |1 — sigtlx;, ¢]]| — yi log| sigftlx. qsn]]

7

GAN cost function

Discriminator uses standard cross entropy loss (see Section 5.4 — binary classification loss):

¢ = arg;nin [Z —(1—y;)log [1 — sig[f[x;, cb]]} — y;log [Sig[f[xz', cb]]}]

i
Generated samples, X;, y; = 0, and for real examples, x;, y; = 1:

A

¢ = argmin Z — log[l — sig[f[x, qb]]} — Zlog [Sig[f[xi, ¢]]}

B \

These are generated These are real samples
samplessoy; =0 soy; =1

We can separate into two summations that separately index over the generated
samples and the real samples.

33

GAN loss function

Real
examples

Generator

Latent Generated
variable samples

Generated Real

Ll

Data

—_—

’¢]] —_—>

Discriminator

Generated

Real

Data

Probability

is real

GAN loss function

Real
examples
{Xz‘}]
Generated Real) ¢]] —>
% —> &5 I
Discriminator
Data
Generator
Latent \ Generated
variable samples
N Generator loss, L[]

~
~

[ZJ log [1-sigf[gz;, 6], ‘MHJ

Generated samples x* = g|z, 0]
should be assigned high
probability by discriminator

Generated Real

[LLAI

Data

Probability
is real

35

GAN loss function

Generated samples x* should have low probability
Real examples x should have high probability

e -3, lox [1-siglfb;. 6] - X log siglf.]
examples Discriminator loss, L[¢]
Y\ N\
{xi}
i|—_> Generated Real ’¢]] —_—> Generated Real
zj —> — {x}} ”m
’ “'l'm Discriminator | l
ata Data
Generator
Latent X Generated Probability
variable samples is real
N Generator loss, L[6)]

~
~
~

| 55 los [1-siglflglz, 6], 4]

Generated samples x* = g|z, 0]
should be assigned high
probability by discriminator 36

GAN cost function

Discriminator uses standard cross entropy loss:

¢ = argglin [Z —(1 = i) log[l — sig[f[x;, qb]]} — y; log [Sig[f[xi, ¢]]]]

)

Discriminator: generated samples, y =0, real examples,y=1:

q%:argmin Z log[l—sng] Zlog[&g Xis H}

¢ J
Generator loss: make generated samples more likely under discriminator (i.e. make discriminator loss larger)

A A

¢, 0 =argmax | argmin Z—log{ —sig(f|g|z;, 0 } Zlog{s,lg Xi,]]]
0 b - , ,

substituted the generator function

for the generated sample .,

GAN Cost function

A

cAb, @ =argmax | argmin Z —log {l—sig[f[g[zj, 0], gb]]} —Z log [sig[f[xi, cb]]}

o :
¢ J
The discriminator parameters, ¢, are manipulated to minimize the loss function

The generator parameters, 6, are manipulated to maximize the loss function.

real

fake
y real [l

i Generator
7]

fake

38

GAN Cost function

A A

¢, 0 =argmax | argmin Z—log[—sig[f|g[z,, 0 } Zlog{&g X@,cb]]}

() ;
¢ J
The discriminator parameters, ¢, are manipulated to minimize the loss function

The generator parameters, 6, are manipulated to maximize the loss function.

Can divide into two parts:

discriminator loss: L[qb]:Z—log[l—Sig[f[glz;, 0 } Zlog[&g Xis]]
J

negated generator loss: L[0] = Z log [1 — sig|f[g[z;, 6], qb]]}

\ J
Y

The 2nd term is constant w.r.t. 6

(gradient aL/ag = 0) sowe candropit) g

GAN Solution

A

¢, 0 =argmax | argmin Z — log [l—sig[f[g[zj, 0], gb]]] —Z log {sig[f[xi, qb]]]

0 & -

oThe solution is the Nash equilibrium
7

olt lays at a saddle point
ols inherently unstable 7

Nash equilibrium

In game theory, the Nash equilibrium, named after the
mathematician John Nash, is the most common way to define
the solution of a non-cooperative game involving two or more
players.

...each player is assumed to know the equilibrium strategies of
the other players, and no one has anything to gain by changing
only one's own strategy. Wikipedia

https://en.wikipedia.org/wiki/Nash_equilibrium

GAN Training Flow Pseudo Python

for c_gan_iter in range(n_gan_iters): # GAN Iterations

Run generator to produce synthesized data
X_syn = generator(z, theta)

Update/train the discriminator
phi = update_discriminator(x_real, x_syn, n_iter_discrim, phi)

Update/train the generator
theta = update_generator(z, theta, n_iter_gen, phi)

See Jupyter Notebook assignment (to be released shortly)

GANS

 GAN loss function

* Tricks for improving performance

e Conditional GANs
* Image translation models

Deep Convolutional (DC) GAN

* Early GAN specialized in image generation

Generator Discriminator

7\

100x 1
I
Latent
variable z 32%32x 128 32%32x 128
16 % 16 % 256 xorx 16 % 16 x 256
88X 8x5H12 88X 8xH12 Pr(real)
4x4x1024 4x4x1024
L (] I:|1 X 1
Project and Fractional sigmoid Strided 4x4 sigmoid
reshape convolution convolution convolution

Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks.”, 2015 43

DCGAN -- Generator

* Input is 100D latent variable, z, drawn
from a uniform distribution

100x 1

Latent
variable z

Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks.”, 2015

DCGAN -- Generator

100x1 * Maps to 4x4x1024 via a linear
transformation
Latent
variable z
4x4x%x1024
| J
e
Project and
reshape

Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks.”, 2015

DCGAN -- Generator

Generator
100x 1
:
Latent
variable z 32x32x128_|” Fractionally strided (stride = 0.5)
convolutions to double resolution
1616 x 256 in each dimension
8 X 8xHl2 . . .
Ixax1021 (= * Final tanh to limit to [-1,1]
|
e -
Project and Fractional sigmoid * Rescaled to [0’255]
reshape convolution

Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks.”, 2015 46

DCGAN -- Discriminator

e Standard convolution network

Discriminator
e Reduces to 1x1 - N -~

* Final sigmoid to create output
probability

32x32x128

16 x16 x 256
8x8xHl2

Ax 4% 1024 Pr(real)
' o Dl x 1
Strided 4x4 sigmoid
convolution convolution

Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks.”, 2015 47

Deep Convolutional (DC) GAN

Generator Discriminator

_100x1
Latent
variable z 32%32x% 128 32x32x128
16x 16 % 256 x or x* 16 16 % 256
8x8x512 8x8x512
4x4x 1024 4% 4% 1024 Pr(real)

1 o ul x1

~ =z = = ~ 7
Project and Fractional ~ sigmoid Strided 4x4 sigmoid

reshape convolution convolution convolution

for c_gan_iter in range(5): # GAN Iterations

Trained as in the earlier example.

Run generator to produce synthesized data
x_syn = generator(z, theta)

Update/train the discriminator
phi = update_discriminator(x_real, x_syn, n_iter_discrim, phi)

Update/train the generator
theta = update_generator(z, theta, n_iter_gen, phi)

Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks.”, 2015 48

Deep Convolutional (DC) GAN

Generator
_100x1
Latent
variable 32x32x 128
16 x16 x 256
e
8x8x512
4x4x1024 = i
- = = =
Project and Fractional sigmoid
reshape convolution

When training is complete
Discard discriminator
Draw new latent variable

Pass through generator

Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks.”, 2015 49

DC GAN Results

Trained on a faces dataset. Trained on ImageNet dataset. Trained on LSUN dataset.

The LSUN classification dataset
contains 10 scene categories, such
as dining room, bedroom, chicken,
50
outdoor church, and so on.

Common Failures with GANs

Mode Dropping: Only represent a
subset of the training distribution.

Mode Collapse: Extreme case
where the generator mostly
ignores the latent variable and
collapses all samples to a few
points

51

GAN Performance and Distribution Distance

1

D;s [P"‘(X*) | P"(X)} =3

D[(L |:PI(X“)

Pr(x*) + Pr(x) }
2

P4

Pr(x*) + Pr(x) 1
5 } T3

D[\'L |:PI<X)

quality coverag
Summary of lengthy analysis in §15.2.1 “Analysis of GAN loss function”

Can be rewritten in terms of dissimilarities between generated and real
probability distributions.

Two important takeaways:
Quality: Generated samples need to occur where real samples are

Coverage: Where there is concentrations of real samples, there should be
good representation from generated samples

We can conclude that:

(i) the GAN loss can be interpreted in terms of distances between
probability distributions and that

(ii) the gradient of this distance becomes zero when the generated
samples are too easy to distinguish from the real examples.

We need a distance metric with better properties.

Wassertein Distance (for continuous distributions)
Earth Mover’s Distance (for discrete probabilities)

* The quantity of work required to transport the probability mass from
one distribution to create the other.

* Use linear programming to find an optimal “transport plan” that

minimizes X P - |i — j|

Transport plan, P d) Distance, |i — j|

a) _ c)
[l
é
Q: ’_’_’_J—'_’_’_’_‘—\
: i=b
b) Index, 7
I

Index, j
See 15.2.4 Wasserstein distance for discrete distributions

i Wasserstein distance

= B [i—=y]

54

GANS

* GAN loss function
* DCGAN results and problems

e Conditional GANs
* Image translation models

Trick 1: Progressive growing

a) 2 +A+$"@
4**-‘: i Train GAN to generate and discriminate 4x4 images
b) Lo .
s Keep weights from step (a), add layers to get
—J e h— to/from 8x8 images and continue training GAN
e ‘Z’Nm - Add layers to get to 16x16 and continue to train.

rrrrrrrrrrrrrrrrrr

Repeat above steps to get to high resolution.

,
rirEic)

\ 4 "
4x4 8x8 16x16 32x32 64x64 128 128 256 %256 512x512

Wolf (2021), Kerras (2018) 56

Trick 2: Minibatch discrimination

* Add in statistics across minibatches of synthesized and real data
* Provided to the discriminator as an additional feature map

* Sends signal back to generator to try to better match real batch
statistics

Trick 3: Truncation

* Only choose random values of latent
variables that are less than a threshold
T distance from the mean of the latent
variables.

* Reduces variation but improves quality

58

Interpolation

Well-behaved latent space: Every latent variable z
should correspond to a plausible data example x and
smooth changes in z should correspond to smooth
changes in x.

59

Interpolation

Well-behaved latent space: Every latent variable z
should correspond to a plausible data example x and
smooth changes in z should correspond to smooth
changes in x.

60

GANS

* GAN loss function
* DCGAN results and problems
* Tricks for improving performance

* Image translation models

Lack of control

* Cannot specify attributes of generated images from vanilla GANs
e E.g. can’t choose ethnicity, age, etc., for a GAN trained on faces.

* Conditional generation models provide this control

Conditional GAN models

a) Conditional GAN Real examples
+ attributes

Latent { |:X7':| }

variable Ci | Probability

Z; —> <* SIg[f[O, e, ¢]] pair is real
. g[Zj,Cj,e] —’{|:]:|}

Cj CJ'

: Discriminator
Attribute Generator Generated samples

vector + attributes

* Passes a vector ¢ of attributes to both the generator and discriminator
* Generator learns to generate sample with correct attribute

e Discriminator learns to distinguish between generated sample with
target attribute and real sample with real attribute

Auxiliary classifier GAN

b) Auxiliary classifier GAN Real
[

Latent exar}r{wp = Probability
variable " siglfi[e, ¢]] |~ isreal

Zj —> . softmax|fz[e, @] Probability

. 8lzj,¢,0l| — x; of class

i >
Generated Discriminator
Class Generator samples

* Similar to Conditional GAN, but use class label instead of attribute
vector

e Discriminator produces:
* Binary real/fake classifier
* Multi-class classifier

Auxiliary Classifier GAN results

Trained on ImageNet images and classes.

monarch butterfly goldfinch daisies redshanks

gray whales

65

InfoGAN

¢) InfoGAN Real
examples »

Latent X, . Prgbablllty

variable sig[f1[e, ¢]] is real

. f .
Eﬂ—» 8lzj,¢;, 0] | — x, L’ - ESS?jte
Generated Discriminator
Generator samples

* Add random attribute variables c to generator

e Discriminator learns to predict discrete and continuous
values of the attributes

INfoGAN results

Learns classes

el SN LN N W

T QSE™ %M N
NN DN O EEmS ds i) O\

Learns orientation

GANS

* GAN loss function

* DCGAN results and problems

* Tricks for improving performance
* Conditional GANs

* Image translation models

68

tent loss Real pairs
I m a ge Pre;:iztion silmilar to \ ' \
translation: o, :
Pix2Pix

n . YI .;' : | l;’ :

| Predicti C

nput, c U-Net rediction n
¥ \

v
Predicted pairs

—>>

Probability
[f[.’ % ¢H — pair is real

Discriminator

Discriminator loss
Input / prediction pair
looks real

* Maps one image to a different style image using a U-Net type model

e Adds a content loss (£{norm) to make the input similar to ground
truth

 Discriminator fed input/prediction and real/modified pairs to predict
real or fake

Isola et al, “Image-to-Image Translation with Conditional Adversarial Networks.” 2016. 69

Image translation: Pix2Pix

b)

Before

d)

Before

After

Before

70

Image translation: SRGAN

a)

Content loss
Prediction agrees Adversarial loss

with real _h'gh Sample looks real
resolution image ~<-. »*

-__)._)

Input, € onvolutional
network Prediction Synthesized

Probability
e .
is real

7¢:|:|

Discriminator

71

Image translation: SRGAN

b) Bicubic (4x)

72

Image translation: CycleGAN

a) Real zebra
Content loss:

prediction agrees
with horse image

flo 91l =" ol

Discriminator

Cycle consistency loss: Predicted "=~ Adversarial loss:
maps back to original image zebra, ¢’ sample looks real

horse

2nd model is also trained.

Encourages the generator to be
reversible

Doesn’t need labeled or matched training
pairs.

Have two sets of data with distinct styles
but no matching pairs.

E.g. Horses and zebras, or photos and
Monet paintings

Three losses

1. Content loss based on (£{norm)
2. Discriminator loss (real vs fake)
3. Cycle-consistency loss

73

Image translation: CycleGAN

b) Horse

74

75

GANS

* GAN loss function

* DCGAN results and problems

* Tricks for improving performance
e Conditional GANs

* Image translation models

Style GAN

Noise

Main
generative
pipeline

Style

.

8x8x1
Noise z3 ® 13

4x4x1
Noise z1 ® ¥,

4x4x1
Noise z2 ® 1,

Noise added to
every channel

8x8x5H12

8x8x5H12

4x4x512 4x4x512

learned U' '
constant

Per-channel
scale and offset
|
Style, y1 Style, yo Style, y3

Linear transform Linear transform Linear transform
Fully connected

2 x1x512 2 x1x512 2 x1x512
network
S | | |
| — Y —
1x1x512 1x1x512
Latent Intermediate
variable z variable w

Separates style from
noise at different scales

Face Examples

Large style changes: face
shape, head pose

Medium-scale changes:
facial features

Fine-scale: hair and skin
color

Noise: hair placement,
freckles

77

' £ A
Changing Changing Changing Changing Increasing Changing Changing
all styles coarse styles med. styles fine styles all noise coarse noise fine noise

Figure 15.20 StyleGAN results. First four columns show systematic changes in
style at various scales. Fifth column shows the effect of increasing noise magni-

tude. Last two columns show different noise vectors at two different scales.
78

This work is subject to a Creative Commons CC-BY-NC-ND license. (C) MIT Press.

Upcoming Topics Feedback

o (8)::::5% i (e
* Diftusion Models o seene L0 et 2o e e 350 aes $38°20e
* Graph Neural Networks XAl F RELh

* Reinforcement Learning el 08 8

https://docs.google.com/forms/d/e/1FAIpQLSfrbURkg6kpBTcZXCy_m622xuWEB0-eP4mYUSiQJfqkf7-0QQ/viewform?usp=header

